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Simulations of compressible boundary layer flow at three different Reynolds numbers 
(Reδ = 5.59×104, 1.78×105, and 1.58×106) are performed using a hybrid large-eddy/Reynolds-
averaged Navier-Stokes method. Variations in the recycling/rescaling method, the higher-
order extension, the choice of primitive variables, the RANS/LES transition parameters, and 
the mesh resolution are considered in order to assess the model. The results indicate that the 
present model can provide good predictions of the mean flow properties and second-moment 
statistics of the boundary layers considered.  Normalized Reynolds stresses in the outer layer 
are found to be independent of Reynolds number, similar to incompressible turbulent 
boundary layers.  

Nomenclature 
a1 =  turbulence model constant 
A = constant in van Driest transformation 
Asst  = turbulence model constant 
B = constant in van Driest transformation 
C = logarithmic-law wall intercept 
Cf = skin friction 
Ckleb = constant in Klebanoff intermittency function 
Cμ = turbulence model constant 
d = distance to nearest wall (m) 
d+ = wall coordinate based on local kinematic viscosity 
dw

+ = wall coordinate based on wall kinematic viscosity 
F =  interface flux vector 
F2 = blending function  
k = turbulence kinetic energy (m/s)2 
M = Mach number 
p = pressure (N/m2) 
Prt = turbulent Prandtl number 
q = subgrid kinetic energy 
Re = Reynolds number 
S = strain rate (1/s) 
T = temperature (K) 
u, v, w = velocity in x, y, z directions (m/s) 
uvd = van Driest-transformed velocity (m/s) 
uτ = friction velocity (m/s) 
V = primitive variable vector 
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r = wall recovery factor 
t = time (s) 
x, y, z = streamwise, wall-normal and spanwise directions in Cartesian coordinates (m) 
α = model constant 
χ = Taylor microscale (m) 
δ = boundary layer thickness (m) 
Δ = filter width, grid size (m) 
η = ratio of turbulence length scales 
γ = ratio of specific heats 
Γ = blending function 
Γkleb = Klebanoff intermittency function 
κ = von Karman constant 
μt = eddy viscosity (kg/(m⋅ s)) 
ν = kinematic viscosity (m2/s) 
νt = kinematic eddy viscosity (m2/s) 
ω = turbulence frequency (1/s) 
Ω = vorticity magnitude (1/s) 
φ = turbulence model constant 
П = wake parameter 
ρ = density (kg/m3) 
θ = boundary layer momentum thickness (m) 
Subscripts 
∞ = free stream 
o = stagnation conditions 
0 = reference condition for boundary layer thickness 
Superscripts 
΄ = fluctuations 

I. Introduction 
ECENTLY, high-fidelity models, such as direct numerical simulation (DNS), large eddy simulation (LES), and   
hybrid large-eddy/Reynolds-averaged Navier-Stokes (LES/RANS) techniques, have been developed to predict 

turbulent shock / boundary layer interactions.1-3 These methods have shown an ability to capture directly the 
unsteadiness of the interactions and to improve our understanding of the underlying physics of complicated high-
speed flows. Predictions of high Reynolds-number flows still remain a challenging issue in DNS or LES due to the 
large computational requirements necessary to resolve near-wall turbulence. Because of their use of near-wall 
modeling, hybrid LES/RANS methods3-6 offer the potential to compute flows at high Reynolds number with much 
less expense than LES or DNS. Accurate predictions would appear to require that most of the boundary layer be 
computed as a large-eddy simulation, but there has been little work done in determining exactly how well the 
boundary layer structure is predicted using these techniques, particularly for high Reynolds numbers.    

The objective of the present work is to examine the effects of various modeling and algorithmic parameters on 
the ability of a representative hybrid LES/RANS method3 to predict mean-flow and second-moment statistics for a 
selection of well-characterized compressible turbulent boundary layers. The baseline model utilizes a flow-
dependent blending function to shift the closure from a RANS model (Menter’s BSL)7 near solid surfaces to a large-
eddy simulation approach further away.  A key to the performance of the method is the precise embedding of the 
RANS component of the closure within the boundary layer and the use of recycling / re-scaling techniques3,6,8-11 to 
sustain the development of larger turbulent structures in the outer layer.  To assess the effects of different variations 
in the formulation, we perform parametric studies based on the flat-plate boundary layer experiment of Luker et al.12 
(Reδ=1.78×105 and M ∞=2.80). These studies vary the position of the average RANS-to-LES transition, the mesh 
resolution, the higher-order extension, and the choice of recycling / re-scaling strategy. Finally, the model is used to 
simulate experiments of Elena and Lacharme13 (Reδ=5.59×104 and M ∞=2.32) and Smits and Muck14 (Reδ=1.58×106 
and M ∞=2.79) in order to assess the Reynolds-number independence of the formulation. The numerical methods and 
physical models used in the investigation are presented in Section II. The results of the assessment of the hybrid 
LES/RANS model and the effects of Reynolds number on turbulent boundary layer development are discussed in 
Sections III and IV, respectively, and some conclusions are presented in Section V. 
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II. Numerical Methods 
The governing compressible Navier-Stokes equations are discretized in a finite-volume framework15. Inviscid 

fluxes are discretized using a low-diffusion flux-splitting scheme (LDFSS)16, while viscous and diffusive fluxes are 
discretized using second-order central differences. A dual-time stepping implicit method is used to advance the 
equations in time. At each time step, a Crank-Nicholson discretization of the equations is solved to a prescribed 
tolerance using a sub-iteration procedure. The matrix system resulting from the linearization of the equation system 
is approximately solved using a planar relaxation procedure at each sub-iteration. To enhance computational 
efficiency, matrix elements are evaluated and factored every second time step and are held fixed over the duration of 
the sub-iterations.   

A. Turbulence Closure 
The hybrid LES/RANS model used in the present study3 is based on Menter’s εω −− kk /  model7 and only 

involves modifications to the eddy viscosity description:        
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As the blending function Γ approaches one, the closure approaches its RANS description, and as it approaches zero, 
a subgrid eddy viscosity is obtained. This work uses a mixed-scale model17 for the subgrid eddy viscosity, defined as 
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An estimate of the subgrid kinetic energy is obtained by test-filtering the resolved-scale velocity data: 
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The blending function Γ  is based on the ratio of the wall distance d to a modeled form of the Taylor micro-
scale:  
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where φ  is set to )98.0(tanh 1−  in order to fix the balancing position (where μκη C=2 ) to Γ = 0.99, and the 

Taylor micro-scale is defined as ωνχ μC= . The constant α  is chosen to enforce the average LES to RANS 
transition ( Γ  = 0.99 position) for equilibrium boundary layers at the point where the wake law starts to deviate from 
the log law.  To determine α  for a particular inflow boundary layer, the following procedure is used.3 First, a 
prediction of the equilibrium boundary layer is obtained, given free-stream properties, a specified wall condition 
(adiabatic or isothermal) and a value for the boundary layer thickness,  from Coles’ Law of the Wall / Wake along 
with the van Driest transformation: 
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An initial estimate for the outer extent of the log layer is defined by finding the value of +
wd such that 
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The value of ντ /dud =+ that corresponds to this value of +
wd is then found through the use of Walz’s formula for 

the static temperature distribution within the boundary layer: 
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The model constant is then found by the equivalence 2α=+d , which arises from the use of inner-layer scaling 
arguments for k andω .   It should be noted that this approach is not universal, as the wake law is not universal.  In 
this investigation, we use a spatially-varying form of the model constant )(xαα = by applying the above procedure 
to the boundary-layer thickness distribution as determined by a RANS simulation.   
 
B. Interface Flux Reconstruction 
  We consider two methods for extending the baseline first-order upwind method16 to higher order in this study.  The 
baseline scheme is the piecewise parabolic method (PPM)18, which reduces to a fourth-order approximation to the 
interface flux:  
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if the data is sufficiently smooth. The PPM enforces local monotonicity by resetting left-and right-state values if 
local extrema are detected. Specifically, the following limiting procedure is performed:   
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The first ‘if’ block in Eq. (11) resets the interpolation function to a constant if iV
r

is a local maximum or minimum.  
The second ‘if’ block in Eq. (11) resets either the left-state value at interface 2/1+i or the right-state value at 
interface 2/1−i so that the interpolation parabola that connects the interface states with the state at the cell center is 
monotonically increasing or decreasing. It is also possible to enforce physical constraints (such as positive pressures 
and densities) at the cell interfaces by a similar cell-by-cell resetting algorithm. We also test the use of 5th order 
upwind-biased interpolations as a replacement for Eq. (10):  
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We also consider different choices for the variable vector used in the reconstruction:  TkTwvuV ],,,,,,[ ωρ=
r

 and 
TkTwvupV ],,,,,,[ ω=

r
  In the discussion that follows, the use of the first set of variables will be denoted as 

SCHEME(ρ,T) (SCHEME being PPM4 or PPM5), while the second is denoted as SCHEME(p,T). The PPM 
requires a seven point stencil in each coordinate direction for both the 4th and 5th order variants.  

C. Inflow Generation Methods 
A key element of the hybrid LES/RANS formulation is the use of recycling/rescaling techniques to initiate and 

sustain grid-resolved turbulent structures in the outer part of the boundary layer.  Among recycling / rescaling 
techniques recently proposed in the literature for compressible flows,3,6,8-11 we consider three variants in the present 
study.  In the first method, the recycled and rescaled velocity, temperature, and density fluctuations are imposed 
onto the RANS mean inflow.3,6 The density fluctuations are adjusted so that a specified rms value (2% in this work) 
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for the pressure fluctuations is maintained, and the temperature fluctuations are also scaled so that Morkovin’s 
hypothesis is not violated.3 In the second method, we separately recycle and rescale the mean and fluctuating 
velocity and temperature fields. The density field is obtained by enforcing a constant-pressure condition at the 
inflow.8 In the third approach, recycled and rescaled mean and fluctuating density fields are also imposed as inflow 
conditions without assuming that the pressure remains constant.9 

The current technique also includes an intermittency function for preventing recycled fluctuations from affecting 
the free-stream regions and in some cases, from accumulating too much energy in the outer part of the boundary 
layer. In this, recycled and rescaled fluctuations are multiplied by a Klebanoff-type intermittency function19: 

 16 ))(1()( −+=Γ inklebkleb Cdd δ   (13) 
where klebC is a model constant and inδ is the inflow boundary layer thickness, before being added to the mean 
profile.  Our baseline value for klebC  is 1.1; other choices for klebC  are considered in the present study. Turbulence 
variables ( Γ,,ωk ) are recycled and rescaled without decomposing them into mean and fluctuating components.3 

D. Computational Details 
Three different high Reynolds number flows developing on flat plates are considered in the present study. For 

each case, the boundary layer properties corresponding to the reference experiments are shown in Table 1. The 
Reynolds numbers (based on the boundary layer thickness) range from 5.59×104 to 1.58×106. The incoming Mach 
number ranges from 2.32 to 2.80. Mean-flow and second-moment data for these boundary layers have been reported 
in Ref. 12-14, 20 and 21. Based on the thickness ( 0δ ) of the boundary layer at the measurement station, the sizes of 
the computational domain are 010δ , 05δ , and 04.6 δ in streamwise, wall-normal and spanwise directions, respectively. 
The baseline meshes are generated so that approximately 20 uniformly-spaced cells per incoming boundary layer 
thickness are present in the streamwise and spanwise directions, and each mesh contains 200128200 ××  cells (5.12 
million) in the streamwise, spanwise, and wall-normal directions, respectively. The grids are clustered to the surface 
in the wall-normal direction using a hyperbolic tangent stretching function so that the minimum grid spacing in wall 
units is less than one.  

The incoming boundary layer is generated by using the three different recycling/rescaling methods described in 
the previous section. The recycling station is located at 05.7 δ  downstream of the inlet. Supersonic outflow boundary 
conditions are used at the far-field and outlet, while no slip boundary condition is used at the wall. A constant wall 
temperature of 276 K is specified for the Smits and Muck14 case, while an adiabatic wall condition is used for the 
other cases. Periodic boundary conditions are used in the spanwise direction. The initial condition is a RANS 2-D 
flat-plate solution, to which a re-scaled fluctuation field from an earlier calculation is super-imposed.3 Following a 
period of about 5 flow-through-times to remove initial transients, time- and span-averaged statistics are collected 
over a minimum of 10 flow through times ( ∞U/100 0δ ).  The computational time step ranged from 0.25-0.4 μs, with 
the differences in time step being related to variations in the mesh sizes discussed later.  

III. Assessment of the Hybrid LES/RANS Method 
If the LES/RANS model of Edwards et al.3 operates as designed, the outer layer will be computed as a large-

eddy simulation and will force the development of the inner layer so that a uniform boundary layer structure will 
emerge in the time- and span-average.  The sensitivity of this response to various factors should be determined, 
however, in order to understand the limitations of the approach and to establish practices that consistently lead to 
acceptable boundary-layer predictions.   For this purpose, we characterize the effect of modeling and algorithm 
parameters on turbulent statistics through comparisons with experimental data of Luker et al.12 Table 2 shows the 
numerical parameters for the cases computed as part of this assessment as well as those for the Elena and 
Lacharme13 and Smits and Muck14 experiments.  Note that the characters L, E, and S represent the Luker et al.,12 
Elena and Lacharme,13 and Smits and Muck14 experiments, respectively. Predictions at the target location are 
compared with mean-flow velocity profiles and Reynolds-stress measurements from the references. Reynolds shear-
stress predictions are normalized by the wall shear stress at the measurement location, whereas Reynolds streamwise 
and wall-normal stresses are presented as rms fluctuation intensities rmsu′ and rmsv′ , which are normalized by the edge 
velocity. Distances from the wall are normalized by the target (experimental) boundary layer thickness so that the 
ability of the methods to predict the growth rate of the boundary layer can be assessed more clearly.  Velocities are 
normalized by the predicted edge velocity.   
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A. Effect of Model Constant for LES/RANS Transition  
First, we focus on the effect of model constant α , which shifts the target position of the midpoint of the 

LES/RANS transition region. The procedure in Section II-A, when applied to the 2-D flat plate boundary layer as 
predicted by the RANS model, gives a spatially-varying constant that may be regressed as a linear distribution 

)/(145.0276.22)( 0δα xx += . This distribution is used as the baseline and is designated as )(0 xα . This choice is 
designed to force the time-averaged LES/RANS transition to occur at the point where the wake law just begins to 
depart from the logarithmic law.  With this choice, the entire logarithmic region is heavily influenced by the RANS 
closure even though some turbulence structure and significant unsteadiness is still present.  Another possible choice 
of the model constant is to use the midpoint of the logarithmic layer as the average transition location. A regression 
equation for the second choice is )/(036.0771.12)( 0δα xxm += . Figure 1 compares the mean velocity profile and 
Reynolds stresses obtained using the baseline )(0 xα  distribution and the )(xmα  distribution. Other modeling 
parameters are given in Table 2. Specifically, the 4th order PPM scheme with pressure and temperature 
reconstruction at the interface is used, the model constant 1.1=klebC , and the Edwards et al.3 recycling / rescaling 
procedure is used on the baseline grid.  The predictions obtained using the baseline distribution )(0 xα  are in good 
agreement with experimental results (Figure 1a), while the second choice )(xmα  leads to an overly-energetic near 
wall velocity profile (Figure 1c). The Reynolds shear stresses are over-predicted in the entire boundary layer for 
the )(xmα  distribution (Figure 1a), reaching values well in excess of the wall shear stress, but the predictions of the 
Reynolds normal stresses in the near wall region show slightly better agreement with experimental results when the 

)(xmα distribution is used. In Figure 1a and in subsequent ones, the modeled component of the Reynolds shear stress 
is indicated toward the left axis ( 0/δy → 0).  The modeled component decays nearly to zero through the action of 
the blending function (though a sub-grid component remains) and is supplanted by the resolved Reynolds stress in 
the outer layer. The total Reynolds stress can be estimated by summing the modeled and resolved components.  The 
modeled components of the Reynolds normal stresses are neglected in Figure 1b and in subsequent ones.  In our 
code, we absorb the trace of the modeled Reynolds-stress tensor into the effective pressure.  The remaining normal-
stress components are very small in the near-wall region when the Boussinesq hypothesis is invoked, and as such, 
high accuracy in normal stress predictions near the surface cannot be expected.  The boundary layer thickness as 
indicated by the Reynolds-stress measurements is over-predicted for both cases. This example shows that a precise 
embedding of the RANS component of the LES/RANS model is a critical factor in achieving accurate turbulent 
statistics for very high Reynolds number flows. 

B. Effect of Interface Flux Reconstruction 
Years of experience with DNS and LES methods have shown that higher-order, minimally dissipative numerical 

methods with high bandwidth efficiency are required to sustain turbulent eddy structures. When shocks are 
considered, then it becomes more difficult to meet these requirements, as they conflict with the need to maintain 
monotone capturing of discontinuities to avoid numerical instabilities. We consider two aspects of the reconstruction 
procedure in the context of the baseline PPM scheme presented in Section II B.  The effects of the choice of the 
variable vector (PPM4(ρ,T) or PPM4(p,T)) used in the reconstruction are shown in Figure 2. Other modeling 
parameters are the same as those of the baseline case. The shape of the mean velocity profile is not very sensitive to 
this choice,  while the levels of Reynolds shear and wall-normal stresses are increased significantly in the outer part 
of the boundary layer for the PPM4(ρ,T) reconstruction, relative to that provided by the PPM4(p,T) reconstruction. 
This might be explained by the following two factors. First, the interface pressure, for the PPM4 (ρ,T) 
reconstruction, will be obtained as a product of the interface density and temperature. The difference in the pressure 
gradient as calculated from this formulation and that obtained directly from the PPM4(p,T) reconstruction can be 
interpreted as a blend of diffusive and anti-diffusive terms, and it is possible that these additional transport 
mechanisms give rise to the amplification of transverse-velocity components. Another factor is that the PPM 
limiting procedure may act more strongly on the pressure than it does on the density and temperature. This could 
mean that grid-scale noise in the pressure field is damped more strongly in the PPM4 (p,T) reconstruction, leading to 
a suppression of similar noise in the transverse velocity components. More smaller-scale structures are captured for 
PPM4(ρ,T), particularly toward the outer part of the boundary layer, as shown in the tranverse-velocity magnitude 
snapshots of Figure 2c.  The energy contained in these structures appears to be in excess of that expected, based on 
the comparisons with experimental data, and this behavior can lead to unphysical levels of boundary-layer growth if 
the spatial domain is long enough.  
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Next, we compare two different variable-extrapolation techniques, PPM4(p,T) and PPM5(p,T), for the 
reconstruction of the fluid properties at the interface. The PPM4 scheme can be viewed as a central-differencing 
scheme that is stabilized through the local use of monotonicity-preserving techniques. Such schemes may be subject 
to aliasing due to the non-linearity inherent in the flux functions. The fifth-order, upwind-biased extrapolations used 
in PPM5 should be less susceptible to aliasing effects. Figure 3 shows that there are no essential differences in the 
predictions of the mean velocity profile and second-moment quantities provided by PPM4(p,T) and PPM5(p,T).   

C. Effect of Inflow Generation Method 
The effects of the three inflow generation methods described in Section II-C are described in this section.  The 

interface fluxes are reconstructed by PPM4(p,T),  the baseline model-constant distribution )(0 xα  is used, and the 
constant klebC in the intermittency function is set to 1.1. Figure 4 illustrates the effect of the Urbin and Knight 
procedure8 for rescaling the mean inflow profile as compared with the use of a RANS inflow profile3 and the Stolz 
and Adams procedure.9 The results indicate that rescaling the mean and fluctuating fields using the Stolz and Adams 
procedure9 yields slightly better predictions for the mean velocity profile, particularly in the inner region. The 
resolved Reynolds stresses for all cases fall within the data ranges of the experiments. In detail, some differences in 
Reynolds shear stresses are observed in the inner region, while no significant difference is found in the outer region.   
The predictions of the Reynolds normal stresses show no significant difference among the methods. All cases show 
that the boundary layer thickness at the target location is over-estimated, with this quantity being reduced slightly 
when the fixed RANS mean inflow is used. All methods result in a transition region near the inlet (extending ~ 03δ  
downstream)9 where the flow attempts to adjust to the imposed inflow condition through the generation of various 
compression / expansion waves. The growth of the boundary layer is delayed in this transition region until these 
waves are attenuated.  

To prevent recycled fluctuations from affecting the free-stream regions, we utilize a Klebanoff-type 
intermittency function to damp recycled fluctuations.  The extent of the intermittency function is controlled by the 
model constant klebC . Figure 5 shows the effect of klebC  on the mean velocity profile and Reynolds-stress 
distributions. Increasing klebC  allows more amplification of turbulent fluctuations in the outer region, leading to 
more growth of the boundary layer.  The shapes of the profiles do not change significantly except near the outer 
edge of the boundary layer, where the wake region expands in accord with the increase in klebC . The choice of 

1.1=klebC  provides better predictions based on the experimental results. Recently, Sagaut et al.11 reported that 
existing inflow-generation methods cannot sustain target values for boundary-layer integral properties over long 
integration times, and this observation is confirmed in our work. The intermittency function appears to help maintain 
a target boundary layer thickness while also isolating the free-stream region from being affected by the recycling 
procedure.  

D. Effect of Spatial Resolution 
The spatial resolution in the wall-transverse directions (streamwise and spanwise directions) is also expected to 

influence predictions of the boundary layer structure. For the hybrid LES/RANS methods, the mesh should be 
generated so that the outer layer is resolved adequately. We use the Escudier mixing length  (~0.1 0δ )19 as an upper 
bound for the mesh spacing and choose half of this value as the baseline mesh spacing ( 20/ =Δδ ). To examine the 
effects of mesh resolution on the predicted quantities, we consider three levels of mesh refinement (10 cells / 0δ , 20 
cells / 0δ , and 30 cells / 0δ  ) as shown in Table 2. Figure 6 shows that mean velocity profile and Reynolds stresses 
for the baseline grid simulation are in good agreement with those for the fine-grid simulation. The wall-normal 
Reynolds stress and the resolved Reynolds shear stress are under-predicted for the coarse-mesh simulation.  The 
under-prediction of the resolved Reynolds shear stress is partially compensated for by an increase in the modeled 
Reynolds shear stress, and as such, the mean velocity profile is relatively unaffected by the mesh resolution.  This 
result is encouraging as it indicates that acceptable results might be obtained on marginally resolved meshes for the 
present hybrid LES/RANS technique.   

IV. Compressible Boundary Layer Flows at High Reynolds Numbers 
  Using the baseline parameters (PPM4(p,T), klebC = 1.1, Edwards, et al. recycling / rescaling3, 20 cells / 0δ ), we 
apply the method to experiments13,14 conducted at Reynolds numbers lower and higher than the baseline12 to test the 
Reynolds-number independence of the present model and to illustrate the effect of the Reynolds number on the 
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mean turbulent flow structure. The boundary layer properties for each case are listed in Table 1 and the 
corresponding numerical parameters are shown in Table 2.  

A. Mean Velocity and Reynolds Stress 
Figure 7 compares results from the hybrid LES/RANS computations with hot-wire and LDA measurements 

reported in Elena and Lacharme13. The regression equation for the model constant α is extracted from a prior RANS 
computation: )/(100.0409.13)( 0δα xx += . The results show good agreement with the experimental data. 
Compared to recent DNS data of this case22, the Reynolds stresses are comparable in the outer part of boundary 
layer but differ near the wall due to the presence of the RANS component in the turbulence closure. Figure 8 shows 
mean velocity profile and Reynolds-stress predictions for the present method as applied to the Smits and Muck14 
experiment. For the model constantα , a regression equation )/(356.0389.72)( 0δα xx += from the initial RANS 
computation is used. Good agreement with the experimental data is evidenced, though the wall-normal Reynolds 
stress is slightly under-predicted. The results shown in Figures 1, 7 and 8 indicate that the present hybrid 
LES/RANS method is able to provide a degree of Reynolds number independence in the predictions of the boundary 
layer structure.   

Figure 9 plots van Driest transformed velocity profiles for the different Reynolds-number cases. As expected, the 
extent of the logarithmic layer increases with the increase in Reynolds number.  Figures 10 and 11 show the effect of 
Reynolds number on the Reynolds stresses. The wall normal coordinate is normalized by the predicted boundary 
layer thickness at 05.7 δ downstream location. The peak positions of the Reynolds stresses move toward the wall as 
the Reynolds number increases. This might be related to the effect of the RANS closure. In the outer layer, there is 
no significant variation in the Reynolds-stress distributions with respect to Reynolds numbers. These results indicate 
that, given similar Mach numbers23, the outer-layer scaling of the turbulent statistics has no dominant dependence on 
Reynolds number, similar to observations in incompressible flows.24 

B. Boundary Layer Properties 
The time-averaged skin-friction coefficient ( fC ) is determined from the averaged streamwise velocity and the 

molecular viscosity computed according to Sutherland’s law using the averaged temperature.23 Figure 12 (a) shows 
a comparison of the present fC  with several experimental results12,13,21,25-28 as a function of Reynolds number based 
on momentum thickness. Variations of fC in the computational domain are marked as error bars. A theoretical 
prediction of the skin-friction variation for incompressible flows24 is also shown in the figure. The present results are 
in excellent agreement with a regression (based on power law) of the experimental data. Figure 12 (b) shows the 
time-averaged streamwise evolution of the boundary thickness for the different Reynolds-number cases. Empirical 
correlations based on power-law relations for the boundary layer integral parameters23 are also shown in the figure. 
The growth rates of the boundary layer in the correlations are re-adjusted to the incoming boundary layer thickness 
used in the present simulations. The present growth rates indicate two distinct features. First, the initial growth rates 
for all cases are under-estimated, relative to the empirical correlations. Secondly, after a transition region of 03~ δ  
(discussed earlier), the boundary layer re-develops, and the corresponding growth rate maintains the empirical rates 
except for the case corresponding to Elena and Lacharme’s experiment.12 The predicted boundary layer thicknesses 
at the target location are larger than the experimental values by 1% to 6%. 

V. Conclusions 
Simulations of compressible boundary layer flows at three different Reynolds numbers (Reδ = 5.59×104, 

1.78×105, and 1.58×106) have been performed using a hybrid large-eddy/Reynolds-averaged Navier-Stokes method. 
The model uses a flow-dependent RANS-to-LES transition function to shift the closure from Menter’s two equation 
RANS model near walls to a mixed subgrid-scale model in the outer part of boundary layer. To assess the present 
hybrid LES/RANS model, the effects of various modeling and algorithmic parameters on the predictions of mean-
flow and second moment statistics have been investigated, and the following conclusions may be stated: 

1) the RANS/LES blending function should be designed to transition to LES toward the outer part of the 
logarithmic region for accurate predictions of the composite structure of the boundary layer and the 
Reynolds-shear stress levels, 

2) reconstructing the interface flux from extrapolated pressure and temperature (as opposed to extrapolated 
density and temperature) is more effective in suppressing grid-scale noise in the transverse velocity 
components, and this leads to better predictions of the outer-layer turbulent structure,  
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3) the choice of variable-extrapolation method (4th order central versus 5th order upwind-biased) does not 
significantly influence predictions of the low-order turbulent statistics,  

4) the choice of recycling / rescaling strategy for the inflow properties does not significantly affect the 
predictions.  All result in a adjustment distance of approximately 03~ δ before the boundary layer begins to 
grow, and all over-estimate the target boundary layer thickness at the recycle-plane location. 

5) the use of a Klebanoff-type intermittency function to attenuate fluctuations in the outer part of the boundary 
layer helps keep the boundary layer growth within the target range.   

6) a resolution metric of 20 cells / boundary layer thickness in the wall-transverse directions yields predictions 
almost identical to those obtained using 30 cells / boundary layer thickness.  Results obtained using only 10 
cells / boundary layer thickness in the wall-transverse directions are not grossly inferior to the refined-mesh 
results (at least for the Reynolds number tested), indicating that acceptable predictions of the boundary 
layer structure might be obtained on  meshes scaled according to the Escudier mixing length.  

7) in general, the present hybrid LES/RANS model provides good predictions of mean-flow and second-
moment boundary layer statistics and exhibits a degree of Reynolds-number independence. Reynolds stress 
distributions plotted using outer-layer scaling are found to be independent of Reynolds number, similar to 
observations in incompressible flows. 
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Table 1. Turbulent boundary layer properties for the referenced experiments 
 

Case M  0δ , mm ∞U , m/s δRe  oP , pa oT , K Ref. experiment 

E0 2.32 10 (12)* 552 5.59×104 5.0×104 291 Elena and  Lacharme (1988) 

L0 2.80 9.9 602 1.78×105 2.1×105 298 Luker et al. (2000) 

S0 2.79 25 562 1.58×106 6.9×106 263 Smits and Muck (1987) 

  Note that * is based on 99.9% of freestream velocity. 
 
 
 
 
 
 
 

Table 2. Numerical parameters of the present Hybrid/LES simulations. 
 

Case α  klebC  Recon. variables Scheme Δ/δ  Inflow method 

L0 0α  1.1 Tp,  PPM4 20 Edwards et al. (2008) 

L1 mα  1.1 Tp,  PPM4 20 Edwards et al. (2008) 

L2 0α  2.0 Tp,  PPM4 20 Edwards et al. (2008) 

L3 0α  1.1 T,ρ  PPM4 20 Edwards et al. (2008) 

L4 0α  1.1 Tp,  PPM5 20 Edwards et al. (2008) 

L5 0α  1.1 Tp,  Sonic-A 20 Edwards et al. (2008) 

L6 0α  1.1 Tp,  PPM4 10 Edwards et al. (2008) 

L7 0α  1.1 Tp,  PPM4 30 Edwards et al. (2008) 

L8 0α  1.1 Tp,  PPM4 10 Urbin & Knight (2001) 

L9 0α  1.1 Tp,  PPM4 10 Stolz & Adams (2003) 

E0 0α  1.1 Tp,  PPM4 20 Edwards et al. (2008) 

S0 0α  1.1 Tp,  PPM4 20 Edwards et al. (2008) 
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Figure 1. Effect of model constant α on (a) mean velocity profiles and Reynolds shear stress predictions, (b) 
streamwise and wall-normal Reynolds stress predictions, and (c) velocity profiles in wall coordinates. 
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Figure 2. Effect of reconstruction variables on (a) mean velocity profiles and Reynolds shear stress 
predictions, (b) streamwise and wall-normal Reynolds stress predictions, and (c) transverse velocity 
magnitude snapshots. 
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Figure 3. Effect of reconstruction method on (a) mean velocity profiles and Reynolds shear stress predictions, 
and (b) streamwise and wall-normal Reynolds stress predictions. 
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Figure 4. Effect of inflow method on (a) mean velocity profiles and Reynolds shear stress predictions, and (b) 
streamwise and wall-normal Reynolds stress predictions. 
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Figure 5. Effect of model constant Ckleb on (a) mean velocity profiles and Reynolds shear stress predictions, 
and (b) streamwise and wall-normal Reynolds stress predictions. 
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Figure 6. Effect of streamwise and spanwise grid size on (a) mean velocity profiles and Reynolds shear stress 
predictions, and (b) streamwise and wall-normal Reynolds stress predictions. 
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Figure 7. (a) Mean velocity profiles and Reynolds shear stress predictions, and (b) streamwise and wall-
normal Reynolds stress predictions for Elena and Lacharme (1988) case. 
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Figure 8. (a) Mean velocity profiles and Reynolds shear stress predictions, and (b) streamwise and wall-
normal Reynolds stress predictions for Smits and Muck (1987) case. 
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Figure 9. Mean velocity profiles for the present hybrid LES/RANS simulations of three different Reynolds 
number flows.  
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Figure 10. The effect of Reynolds number on (a) Reynolds shear stress and (b) streamwise and wall-normal 
Reynolds stress distributions. 
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Figure 11. The effect of Reynolds number on (a) skin-friction coefficient and (b) boundary layer growth rates. 


